Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Toxins (Basel) ; 14(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355974

RESUMO

Increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of snake venoms. However, the complexity of animal venoms and the extreme synergy of the venom components during envenomation calls for critical review and analysis. The epithelium is a primary target for injected viper venom's toxic substances, and therefore, is a focus in modern toxinology. We used the Vero epithelial cell line as a model to compare the actions of a crude Macrovipera lebetina obtusa (Levantine viper) venom with the actions of the same venom with two key enzymatic components inhibited (specifically, phospholipase A2 (PLA2) and metalloproteinases) in the bioenergetic cellular response, i.e., oxygen uptake and reactive oxygen species generation. In addition to the rate of free-radical oxidation and lipid peroxidation, we measured real-time mitochondrial respiration (based on the oxygen consumption rate) and glycolysis (based on the extracellular acidification rate) using a Seahorse analyzer. Our data show that viper venom drives an increase in both glycolysis and respiration in Vero cells, while the blockage of PLA2 or/and metalloproteinases affects only the rates of the oxidative phosphorylation. PLA2-blocking in venom also increases cytotoxic activity and the overproduction of reactive oxygen species. These data show that certain components of the venom may have a different effect within the venom cocktail other than the purified enzymes due to the synergy of the venom components.


Assuntos
Venenos de Víboras , Viperidae , Animais , Chlorocebus aethiops , Venenos de Víboras/toxicidade , Células Vero , Espécies Reativas de Oxigênio/metabolismo , Viperidae/metabolismo , Fosfolipases A2/farmacologia , Fosfolipases A2/metabolismo , Metaloproteases/toxicidade , Metaloproteases/metabolismo , Peroxidação de Lipídeos
2.
PLoS Negl Trop Dis ; 15(9): e0009715, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478462

RESUMO

Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocytopenia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microangiopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis, and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake venom metalloproteinases (SVMP), disturb the normal interaction between platelets and VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom (BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV preincubated with anti-botrocetin antibodies (ABA) and/or Na2-EDTA (a SVMP inhibitor), and (b) VWF knockout mice (Vwf-/-) injected with BjV. Under all conditions, BjV induced a rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. Moreover, VWF:Ag levels in rats that received BjV preincubated with Na2-EDTA and/or ABA tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf-/- and C57BL/6 (background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demonstrating that thrombocytopenia was independent of the presence of plasma VWF. These findings showed that botrocetin present in BjV failed to affect the extent or the time course of thrombocytopenia induced by envenomation, but it contributed to decrease the levels and function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an ancillary event, and not the main mechanism leading to decreased platelet counts.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/complicações , Venenos de Serpentes/toxicidade , Trombocitopenia/etiologia , Trombocitopenia/metabolismo , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Venenos de Crotalídeos/metabolismo , Feminino , Humanos , Masculino , Metaloproteases/metabolismo , Metaloproteases/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Venenos de Serpentes/enzimologia , Venenos de Serpentes/metabolismo , Trombocitopenia/sangue , Trombocitopenia/genética , Fator de von Willebrand/genética
3.
Toxins (Basel) ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437385

RESUMO

Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40-60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.


Assuntos
Crotalinae , Proteoma , Proteínas de Répteis , Venenos de Víboras , Animais , Antivenenos/imunologia , Coagulantes/análise , Coagulantes/imunologia , Coagulantes/toxicidade , Humanos , L-Aminoácido Oxidase/análise , L-Aminoácido Oxidase/imunologia , L-Aminoácido Oxidase/toxicidade , Metaloproteases/análise , Metaloproteases/imunologia , Metaloproteases/toxicidade , Fosfolipases A2/análise , Fosfolipases A2/imunologia , Fosfolipases A2/toxicidade , Plasma/efeitos dos fármacos , Proteoma/análise , Proteoma/imunologia , Proteoma/toxicidade , Proteômica , Proteínas de Répteis/análise , Proteínas de Répteis/imunologia , Proteínas de Répteis/toxicidade , Serina Proteases/análise , Serina Proteases/imunologia , Serina Proteases/toxicidade , Venenos de Víboras/química , Venenos de Víboras/imunologia , Venenos de Víboras/toxicidade
4.
Toxins (Basel) ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34437392

RESUMO

Acute kidney injury (AKI) following Eastern Russell's viper (Daboia siamensis) envenoming is a significant symptom in systemically envenomed victims. A number of venom components have been identified as causing the nephrotoxicity which leads to AKI. However, the precise mechanism of nephrotoxicity caused by these toxins is still unclear. In the present study, we purified two proteins from D. siamensis venom, namely RvPLA2 and RvMP. Protein identification using LCMS/MS confirmed the identity of RvPLA2 to be snake venom phospholipase A2 (SVPLA2) from Thai D. siamensis venom, whereas RvMP exhibited the presence of a factor X activator with two subunits. In vitro and in vivo pharmacological studies demonstrated myotoxicity and histopathological changes of kidney, heart, and spleen. RvPLA2 (3-10 µg/mL) caused inhibition of direct twitches of the chick biventer cervicis muscle preparation. After administration of RvPLA2 or RvMP (300 µg/kg, i.p.) for 24 h, diffuse glomerular congestion and tubular injury with minor loss of brush border were detected in envenomed mice. RvPLA2 and RvMP (300 µg/kg; i.p.) also induced congestion and tissue inflammation of heart muscle as well as diffuse congestion of mouse spleen. This study showed the significant roles of PLA2 and SVMP in snake bite envenoming caused by Thai D. siamensis and their similarities with observed clinical manifestations in envenomed victims. This study also indicated that there is a need to reevaluate the current treatment strategies for Thai D. siamensis envenoming, given the potential for irreversible nephrotoxicity.


Assuntos
Daboia , Metaloproteases/toxicidade , Fosfolipases A2/toxicidade , Proteínas de Répteis/toxicidade , Venenos de Víboras/toxicidade , Injúria Renal Aguda/patologia , Animais , Galinhas , Rim/patologia , Masculino , Metaloproteases/isolamento & purificação , Camundongos Endogâmicos ICR , Músculo Esquelético/fisiologia , Miocárdio/patologia , Fosfolipases A2/química , Fosfolipases A2/isolamento & purificação , Proteínas de Répteis/isolamento & purificação , Baço/patologia , Venenos de Víboras/química
5.
Toxicon ; 197: 12-23, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872676

RESUMO

Snakebite envenoming is a neglected tropical disease affecting millions of people every year, especially in vulnerable rural populations in the developing world. Viperid snakes cause envenomings characterized by a complex pathophysiology which includes local and systemic hemorrhage due to the action of snake venom metalloproteinases (SVMPs). The pathogenesis of SVMP-induced systemic hemorrhage has not been investigated in detail. This study explored the pulmonary hemorrhage induced in a murine model by a P-III SVMP from the venom of Crotalus simus. Histological analysis revealed extravasation in the lungs as early as 15 min after intravenous injection of the toxin, and hemorrhage increased at 360 min. Western blot analysis demonstrated the cleavage of basement membrane (BM) proteins in lung homogenates and in bronchoalveolar lavage fluid, implying an enzymatic disruption of this extracellular matrix structure at the capillary-alveolar barrier. Likewise, alveolar edema was observed, with an increment in protein concentration in the bronchoalveolar lavage fluid, and a neutrophil-rich inflammatory infiltrate was present in the parenchyma of the lungs as part of the inflammatory reaction. Pretreatment of mice with indomethacin, pentoxifylline and an anti-neutrophil antibody resulted in a significant decrease in pulmonary hemorrhage at 360 min. These findings suggest that this P-III SVMP induces acute lung injury through the direct action of this enzyme in the capillary-alveolar barrier integrity, as revealed by BM degradation, and as a consequence of the inflammatory reaction that develops in lung tissue. Our findings provide novel clues to understand the mechanism of action of hemorrhagic SVMPs in the lungs.


Assuntos
Venenos de Crotalídeos , Metaloproteases , Animais , Membrana Basal , Venenos de Crotalídeos/toxicidade , Hemorragia/induzido quimicamente , Inflamação , Metaloproteases/toxicidade , Camundongos , Venenos de Serpentes
6.
PLoS Negl Trop Dis ; 15(2): e0008596, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529194

RESUMO

Echis carinatus (EC) is known as saw-scaled viper and it is endemic to the Indian subcontinent. Envenoming by EC represents a major cause of snakebite mortality and morbidity in the Indian subcontinent. Zinc (Zn++) dependent snake venom metalloproteases (SVMPs) present in Echis carinatus venom (ECV) is well known to cause systemic hemorrhage and coagulopathy in experimental animals. An earlier report has shown that ECV activates neutrophils and releases neutrophil extracellular traps (NETs) that blocks blood vessels leading to severe tissue necrosis. However, the direct involvement of SVMPs in the release of NETs is not clear. Here, we investigated the direct involvement of EC SVMPs in observed pathological symptoms in a preclinical setup using specific Zn++ metal chelator, Tetraethyl thiuram disulfide (TTD)/disulfiram. TTD potently antagonizes the activity of SVMPs-mediated ECM protein degradation in vitro and skin hemorrhage in mice. In addition, TTD protected mice from ECV-induced footpad tissue necrosis by reduced expression of citrullinated H3 (citH3) and myeloperoxidase (MPO) in footpad tissue. TTD also neutralized ECV-induced systemic hemorrhage and conferred protection against lethality in mice. Moreover, TTD inhibited ECV-induced NETosis in human neutrophils and decreased the expression of peptidyl arginine deiminase (PAD) 4, citH3, MPO, and p-ERK. Further, we demonstrated that ECV-induced NETosis and tissue necrosis are mediated via PAR-1-ERK axis. Overall, our results provide an insight into SVMPs-induced toxicities and the promising protective efficacy of TTD can be extrapolated to treat severe tissue necrosis complementing anti-snake venom (ASV).


Assuntos
Dissulfiram/farmacologia , Metaloproteases/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Mordeduras de Serpentes/fisiopatologia , Venenos de Víboras/metabolismo , Viperidae/fisiologia , Animais , Antivenenos/uso terapêutico , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Hemorragia/prevenção & controle , Humanos , Metaloproteases/toxicidade , Camundongos , Necrose , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/toxicidade
7.
Toxins (Basel) ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430137

RESUMO

Scyphozoan envenomation is featured as severe cutaneous damages due to the toxic effects of venom components released by the stinging nematocysts of a scyphozoan. However, the oedematogenic property and mechanism of scyphozoan venoms remain uninvestigated. Here, we present the oedematogenic properties of the nematocyst venom from Nemopilema nomurai (NnNV), a giant stinging scyphozoan in China, for the first time, using in vivo and in vitro models with class-specific inhibitors. NnNV was able to induce remarkable oedematogenic effects, including induction of significant oedema in the footpad and thigh of mouse, and increase in vascular permeability in the dorsal skin and kidney. Moreover, batimastat, a specific metalloproteinase inhibitor, could significantly reduce the Evan's blue leakage in the damaged organs and attenuate paw oedema after 12 h, but exerted no influence on NnNV-induced thigh oedema. These observations suggested a considerable contribution of NnNV metalloproteinase-like components to the increased vasopermeability, and the participation was strongly suggested to be mediated by destroying the integrity of the vascular basement membrane. Moreover, partial isolation combined LC-MS/MS profiling led to identification of the protein species Nn65 with remarkable metalloproteinase activity. This study contributes to the understanding of the effector components underlying the cutaneous damages induced by scyphozoan stings.


Assuntos
Venenos de Cnidários/toxicidade , Edema/induzido quimicamente , Metaloproteases/toxicidade , Cifozoários/fisiologia , Administração Tópica , Animais , Permeabilidade Capilar/efeitos dos fármacos , Carpas , Fracionamento Químico , Cromatografia em Gel , Injeções Intramusculares , Metaloproteases/metabolismo , Camundongos , Camundongos Endogâmicos ICR
8.
Toxicol Lett ; 333: 211-221, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841740

RESUMO

Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes. Key Contribution: Our findings shed light upon the hemorrhagic and coagulotoxic effects of three SVMPs of the P-III class, as well as the coagulotoxic effects of SVMPs on human, avian and amphibian plasmas. Antivenom neutralised prothrombin-activating isoforms better than Factor X activating isoforms.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/prevenção & controle , Metaloproteases/toxicidade , Venenos de Serpentes/enzimologia , Animais , Bothrops , Feminino , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/fisiopatologia , Humanos , Microscopia Intravital , Masculino , Metaloproteases/química , Camundongos , Microcirculação/efeitos dos fármacos , Microvasos/diagnóstico por imagem , Microvasos/efeitos dos fármacos , Microvasos/patologia , Isoformas de Proteínas
9.
Sci Rep ; 10(1): 12912, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737331

RESUMO

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.


Assuntos
Proteínas Sanguíneas/metabolismo , Bothrops , Venenos de Crotalídeos/toxicidade , Hemorragia , Metaloproteases/toxicidade , Peptidoglicano/sangue , Proteólise , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/sangue , Receptor beta de Fator de Crescimento Derivado de Plaquetas/sangue , Proteínas de Répteis/toxicidade , Animais , Hemorragia/sangue , Hemorragia/induzido quimicamente , Masculino , Camundongos
10.
Toxins (Basel) ; 12(2)2020 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024243

RESUMO

Snake venom metalloproteinases (SVMPs) play an important role in local tissue damage of snakebite patients, mostly by hydrolysis of basement membrane (BM) components. We evaluated the proinflammatory activity of SVMPs Atroxlysin-Ia (ATXL) and Batroxrhagin (BATXH) from Bothrops atrox venom and their hydrolysis products of Matrigel. BALB/c mice were injected with SVMPs (2 µg), for assessment of paw edema and peritoneal leukocyte accumulation. Both SVMPs induced edema, representing an increase of ~70% of the paw size. Leukocyte infiltrates reached levels of 6 × 106 with ATXL and 5 × 106 with BATXH. TNF-α was identified in the supernatant of BATXH-or venom-stimulated MPAC cells. Incubation of Matrigel with the SVMPs generated fragments, including peptides from Laminin, identified by LC-MS/MS. The Matrigel hydrolysis peptides caused edema that increased 30% the paw size and promoted leukocyte accumulation (4-5 × 106) to the peritoneal cavity, significantly higher than Matrigel control peptides 1 and 4 h after injection. Our findings suggest that ATXL and BATXH are involved in the inflammatory reaction observed in B. atrox envenomings by direct action on inflammatory cells or by releasing proinflammatory peptides from BM proteins that may amplify the direct action of SVMPs through activation of endogenous signaling pathways.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Metaloproteases/toxicidade , Animais , Membrana Basal , Citocinas/imunologia , Edema/imunologia , Hidrólise , Contagem de Leucócitos , Masculino , Camundongos Endogâmicos BALB C , Cavidade Peritoneal
11.
Toxins (Basel) ; 12(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861940

RESUMO

Snake bite envenoming is a public health problem that was recently included in the list of neglected tropical diseases of the World Health Organization. In the search of new therapies for the treatment of local tissue damage induced by snake venom metalloproteinases (SVMPs), we tested the inhibitory activity of peptidomimetic compounds designed as inhibitors of matrix metalloproteinases on the activities of the SVMP Batx-I, from Bothrops atrox venom. The evaluated compounds show great potential for the inhibition of Batx-I proteolytic, hemorrhagic and edema-forming activities, especially the compound CP471474, a peptidomimetic including a hydroxamate zinc binding group. Molecular dynamics simulations suggest that binding of this compound to the enzyme is mediated by the electrostatic interaction between the hydroxamate group and the zinc cofactor, as well as contacts, mainly hydrophobic, between the side chain of the compound and amino acids located in the substrate binding subsites S1 and S1 ' . These results show that CP471474 constitutes a promising compound for the development of co-adjuvants to neutralize local tissue damage induced by snake venom metalloproteinases.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteases/toxicidade , Fosfolipases A2/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Animais , Edema/induzido quimicamente , Edema/prevenção & controle , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptidomiméticos/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Mordeduras de Serpentes/patologia , Zinco/química , Zinco/farmacologia
12.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340554

RESUMO

Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/química , Proteínas de Artrópodes/química , Venenos de Escorpião/química , Escorpiões/química , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/uso terapêutico , Descoberta de Drogas/métodos , Expressão Gênica , Humanos , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Irã (Geográfico) , Metaloproteases/biossíntese , Metaloproteases/isolamento & purificação , Metaloproteases/toxicidade , Fosfolipases A2/biossíntese , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/toxicidade , Filogenia , Picadas de Escorpião/fisiopatologia , Venenos de Escorpião/biossíntese , Venenos de Escorpião/isolamento & purificação , Escorpiões/classificação , Escorpiões/patogenicidade , Escorpiões/fisiologia , Inibidores de Serina Proteinase/biossíntese , Inibidores de Serina Proteinase/isolamento & purificação , Inibidores de Serina Proteinase/toxicidade , Especificidade da Espécie
13.
Toxicol In Vitro ; 61: 104586, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31271808

RESUMO

The aim of this study was to evaluate the immunomodulatory effects of two toxins from Bothrops snake venoms (the P-I metalloprotease Batroxase and the thrombin-like serine protease Moojase) on human peripheral blood mononuclear cells (PBMC), also investigating changes in the expression of genes related to epigenetic alterations and their immunotherapeutic potential. After 24 h of PBMC stimulation, Batroxase (2 µg/mL) and Moojase (4 µg/mL) increased some cytokine levels (including IL-6 and IL-10), but did not promote cell death processes (apoptosis/necrosis) or alterations in the global DNA methylation levels. Gene expression experiments (RT-qPCR) showed that most of the genes with altered transcript levels encode enzymes that act on histones, such as acetyltransferases (HAT1), deacetylases (HDACs), methyltransferases (DOT1L) or demethylases (KDM5B), indicating that these toxins may alter gene regulation through epigenetic changes mainly related to histones and to methyl-CpG binding proteins (MECP2). Subsequently, the immunotherapeutic potential of these toxins was evaluated using in vitro cytotoxicity assays with NK cells and K562 leukemic cells. Both toxins were able to potentiate the NK cell cytotoxic effects against K562 tumor cells, and the effect of Batroxase was dependent on the concomitant stimulus with IL-2, whereas Moojase increased the NK cytotoxicity independently of IL-2. Thus, Batroxase and Moojase presented interesting immunomodulatory effects that could be explored for the development of new strategies in anticancer immunotherapies.


Assuntos
Venenos de Crotalídeos/toxicidade , Fatores Imunológicos/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Metaloproteases/toxicidade , Proteínas de Répteis/toxicidade , Adulto , Animais , Bothrops , Sobrevivência Celular , Citocinas/metabolismo , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Células Matadoras Naturais , Leucócitos Mononucleares/metabolismo , Masculino , Adulto Jovem
14.
Front Immunol ; 10: 1137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231362

RESUMO

Envenomation by Bothrops snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of Bothrops pirajai. Considering the inflammatory nature of Bothrops venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1ß and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1ß, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by Bothrops snake venom toxins.


Assuntos
Bothrops , Proteínas do Sistema Complemento/imunologia , Venenos de Crotalídeos , Metaloproteases/toxicidade , Proteínas de Répteis/toxicidade , Anafilatoxinas/análise , Animais , Ativação do Complemento/efeitos dos fármacos , Citocinas/imunologia , Humanos , Leucócitos/imunologia , Peptídeos Cíclicos/farmacologia
15.
Toxins (Basel) ; 11(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717298

RESUMO

The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition of its venom. Phospholipases A2 (PLA2, 25.3% of the venom proteome), serine proteinases (SVSP, 16.2%), metalloproteinases (SVMP, 17.2%), vasoactive peptides (bradykinin-potentiating peptides (BPPs), 9.5% and C-type natriuretic peptides (C-NAP, 7.8%), cysteine-rich secretory protein (CRISP, 8%) and L-amino acid oxidase (LAO, 7.3%) represent the major toxin classes found in V. b. berus (Russia) venom. This study was also designed to assess the in vivo and in vitro preclinical efficacy of the Russian Microgen antivenom in neutralizing the main effects of V. b. berus venom. The results show that this antivenom is capable of neutralizing the lethal, hemorrhagic and PLA2 activities. Third-generation antivenomics was applied to quantify the toxin-recognition landscape and the maximal binding capacity of the antivenom for each component of the venom. The antivenomics analysis revealed that 6.24% of the anti-V. b. berus F(ab')2 molecules fraction are toxin-binding antibodies, 60% of which represent clinically relevant antivenom molecules.


Assuntos
Antivenenos/farmacologia , Venenos de Víboras/química , Venenos de Víboras/toxicidade , Animais , Antivenenos/química , Feminino , L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/toxicidade , Masculino , Metaloproteases/química , Metaloproteases/toxicidade , Camundongos , Peptídeos/química , Peptídeos/toxicidade , Fosfolipases A2/química , Fosfolipases A2/toxicidade , Federação Russa , Serina Proteases/química , Serina Proteases/toxicidade , Viperidae
16.
J Proteome Res ; 17(11): 3904-3913, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30223649

RESUMO

Jellyfish are a type of poisonous cnidarian invertebrate that secrete lethal venom for predation or defense. Human beings often become victims of jellyfish stings accidentally while swimming or fishing and suffer severe pain, itching, swelling, inflammation, shock, and even death. Jellyfish venom is composed of various toxins, and the lethal toxin is the most toxic and hazardous component of the venom, which is responsible for deaths caused by jellyfish stings and envenomation. Our previous study revealed many toxins in jellyfish venom, including phospholipase A2, metalloproteinase, and protease inhibitors. However, it is still unknown which type of toxin is lethal and how it works. Herein a combined toxicology analysis, proteome strategy, and purification approach was employed to investigate the lethality of the venom of the jellyfish Cyanea nozakii. Toxicity analysis revealed that cardiotoxicity including acute myocardial infarction and a significant decrease in both heart rate and blood pressure is the primary cause of death. Purified lethal toxin containing a fraction of jellyfish venom was subsequently subjected to proteome analysis and bioinformation analysis. A total of 316 and 374 homologous proteins were identified, including phospholipase A2-like toxins and metalloprotease-like toxins. Furthermore, we confirmed that the lethality of the jellyfish venom is related to metalloproteinase activity but without any phospholipase A2 activity or hemolytic activity. Altogether, this study not only provides a comprehensive understanding of the lethal mechanism of jellyfish venom but also provides very useful information for the therapeutic or rescue strategy for severe jellyfish stings.


Assuntos
Venenos de Cnidários/química , Metaloproteases/isolamento & purificação , Infarto do Miocárdio/induzido quimicamente , Fosfolipases A2/isolamento & purificação , Proteoma/isolamento & purificação , Cifozoários/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Cromatografia Líquida , Venenos de Cnidários/toxicidade , Feminino , Ontologia Genética , Coração/efeitos dos fármacos , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Espectrometria de Massas , Metaloproteases/química , Metaloproteases/toxicidade , Camundongos , Anotação de Sequência Molecular , Infarto do Miocárdio/fisiopatologia , Fosfolipases A2/química , Fosfolipases A2/toxicidade , Proteoma/química , Proteoma/classificação , Proteoma/toxicidade , Proteômica/métodos , Cifozoários/patogenicidade , Cifozoários/fisiologia , Baço/efeitos dos fármacos , Baço/fisiopatologia
17.
Toxicol Lett ; 287: 142-154, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428543

RESUMO

Synergism is a significant phenomenon present in snake venoms that may be an evolving strategy to potentiate toxicities. Synergism exists between different toxins or toxin complexes in various snake venoms, with phospholipaseA2s (PLA2s) (toxins or subunits) the main enablers. The predominant toxins, snake venom PLA2s, metalloproteases (SVMPs), serine proteases (SVSPs) and three-finger toxins (3FTxs), play essential roles in synergistic processes. The hypothetical mechanisms of synergistic effect can be generalized under the effects of amplification and chaperoning. The Toxicity Score is among the few quantitative methods to assess synergism. Selection of toxins involved in synergistically enhanced toxicity as the targets are important for development of novel antivenoms or inhibitors.


Assuntos
Metaloproteases/toxicidade , Chaperonas Moleculares/toxicidade , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/toxicidade , Serina Proteases/toxicidade , Venenos de Serpentes/toxicidade , Toxinas Biológicas/toxicidade , Animais , Sinergismo Farmacológico , Humanos , Metaloproteases/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multienzimáticos , Proteômica/métodos , Serina Proteases/metabolismo , Venenos de Serpentes/enzimologia , Testes de Toxicidade , Toxinas Biológicas/metabolismo
18.
Toxins (Basel) ; 9(8)2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767072

RESUMO

Hemorrhage is the most prominent effect of snake venom metalloproteinases (SVMPs) in human envenomation. The capillary injury is a multifactorial effect caused by hydrolysis of the components of the basement membrane (BM). The PI and PIII classes of SVMPs are abundant in viperid venoms and hydrolyze BM components. However, hemorrhage is associated mostly with PIII-class SVMPs that contain non-catalytic domains responsible for the binding of SVMPs to BM proteins, facilitating enzyme accumulation in the tissue and enhancing its catalytic efficiency. Here we report on Atroxlysin-Ia, a PI-class SVMP that induces hemorrhagic lesions in levels comparable to those induced by Batroxrhagin (PIII-class), and a unique SVMP effect characterized by the rapid onset of dermonecrotic lesions. Atroxlysin-Ia was purified from B. atrox venom, and sequence analyses indicated that it is devoid of non-catalytic domains and unable to bind to BM proteins as collagen IV and laminin in vitro or in vivo. The presence of Atroxlysin-Ia was diffuse in mice skin, and localized mainly in the epidermis with no co-localization with BM components. Nevertheless, the skin lesions induced by Atroxlysin-Ia were comparable to those induced by Batroxrhagin, with induction of leukocyte infiltrates and hemorrhagic areas soon after toxin injection. Detachment of the epidermis was more intense in skin injected with Atroxlysin-Ia. Comparing the catalytic activity of both toxins, Batroxrhagin was more active in the hydrolysis of a peptide substrate while Atroxlysin-Ia hydrolyzed more efficiently fibrin, laminin, collagen IV and nidogen. Thus, the results suggest that Atroxlysin-Ia bypasses the binding step to BM proteins, essential for hemorrhagic lesions induced by PII- and P-III class SVMPs, causing a significantly fast onset of hemorrhage and dermonecrosis, due to its higher proteolytic capacity on BM components.


Assuntos
Músculos Abdominais/efeitos dos fármacos , Bothrops , Hemorragia/induzido quimicamente , Metaloproteases/toxicidade , Pele/efeitos dos fármacos , Venenos de Serpentes/enzimologia , Músculos Abdominais/patologia , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Hemorragia/patologia , Hidrólise , Masculino , Camundongos , Necrose/induzido quimicamente , Necrose/patologia , Pele/patologia
19.
J Biochem Mol Toxicol ; 31(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28245079

RESUMO

Snake venom metalloproteinases are the most abundant toxins in Viperidae venoms. In this study, a new hemorrhagin, Cc HSM-III (66 kDa), was purified from Cerastes cerastes venom by gel filtration, ion exchange, and reversed-phase high-performance liquid chromatographies. The analysis of Cc HSM-III by liquid chromatography with a tandem mass spectrometry revealed 32 peptides sharing a homology with P-III metalloproteinases from Echis ocellatus snake venom. Cc HSM-III displays hemorrhagic activity with a minimal hemorrhagic dose of 5 µg, which is abolished by ethylene diamine tetracetic acid but not by phenylmethylsulfonyl fluoride. The mechanism underlying Cc HSM-III hemorrhagic activity is probably due to its extensive proteolytic activity against type IV collagen. Cc HSM-III induces local tissue damage and an inflammatory response by upregulating both matrix metalloproteinase 2 and 9 in skin of mice. Thus, Cc HSM-III may play a key role in the pathogenesis of C. cerastes envenomation.


Assuntos
Hemorragia/induzido quimicamente , Metaloproteases , Venenos de Víboras/química , Viperidae , Animais , Hemorragia/metabolismo , Hemorragia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Metaloproteases/química , Metaloproteases/isolamento & purificação , Metaloproteases/toxicidade , Camundongos , Pele/metabolismo , Pele/patologia
20.
Mol Immunol ; 85: 238-247, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28327442

RESUMO

Bothrops envenomations can promote severe inflammatory responses by inducing edema, pain, leukocyte recruitment and release of chemical mediators by local cells. In the present study, two toxins from Bothrops atrox venom (the P-I metalloprotease Batroxase and the acidic phospholipase A2 BatroxPLA2) were evaluated in relation to their inflammatory effects induced in vivo and in vitro, mainly focusing on the participation of different immune cells and inflammatory mediators. Both toxins mainly promoted acute inflammatory responses with significant recruitment of neutrophils in the early hours (1-4h) after administration into the peritoneal cavity of C57BL/6 mice, and increased infiltration of mononuclear cells especially after 24h. Among the mediators induced by both toxins are IL-6, IL-10 and PGE2, with Batroxase also inducing the release of L-1ß, and BatroxPLA2 of LTB4 and CysLTs. These responses pointed to possible involvement of immune cells such as macrophages and mast cells, which were then evaluated in vitro. Mice peritoneal macrophages stimulated with Batroxase produced significant levels of IL-6, IL-1ß, PGE2 and LTB4, whereas stimulus with BatroxPLA2 induced increases of IL-6, PGE2 and LTB4. Furthermore, both toxins were able to stimulate degranulation of RBL-2H3 mast cells, but with distinct concentration-dependent effects. Altogether, these results indicated that Batroxase and BatroxPLA2 promoted local and acute inflammatory responses related to macrophages and mast cells and to the production of several mediators. Our findings should contribute for better understanding the different mechanisms of toxicity induced by P-I metalloproteases and phospholipases A2 after snakebite envenomations.


Assuntos
Venenos de Crotalídeos/toxicidade , Mediadores da Inflamação/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Leucócitos/efeitos dos fármacos , Animais , Bothrops , Modelos Animais de Doenças , Leucócitos/imunologia , Masculino , Metaloproteases/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipases A2/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA